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Introduction 
These notes were generated as a discussion with a PhD student at AGBU, Peter.  They are now made available for 
others interested in fitting models to repeated observations.  Both ASReml and Echidna may be used to fit these 
models. 
 
Repeated observations come in two basic forms, regular and irregular. 
 

Regular repeated measures  
 
Regular repeated measures are taken on all subjects at regular intervals, say monthly, or at particular stages, say 
birth, weaning, yearling, mature. 
 
Irregular repeated measures are more opportunistic, measures are taken when convenient with respect to the 
individual but at different times/ages across individuals. 
 
Regular repeated measures can be analysed with an overall mean trend (mean for each time point) and an 
antedependence variance structure across times.  For example, in some data on growth of Thai chickens, the 11677 
birds were weighed at day old, and monthly until six months.  The mean weights were 

Age 1 28 56 84 112 140 168 

Weight 30.9±3.4 218.9±56.7 642±139 1098±210 1486±306 1810±406 2124±470 

 
The birds were raised in 88 cohorts. Presumably these were at different times and so would have had individual 
cohort growth patterns.  We could fit these as Age.Cohort set of effects with Age a factor, or as Cohort and 
Cohort.Age effects where Age is a covariate (say -3,-2,-1,0,1,2,3).  I have done the latter treating intercept and slope 
as random.  That is, random regressions about the overall response pattern.  One could extend this to a quadratic 
response.   
 
The pedigree of the birds was known and is summarised in ASReml as 
   12229 identities in the pedigree over 5 generations. 
       For first parent labelled Sire, second labelled  Dam 
     Sire Sire_of_Sire  Dam_of_Sire      Dam  Sire_of_Dam   Dam_of_Dam 
      487          178          246     1470          266          518 

 
We can use an ANTEDEPENDENCE covariance structure for the genetic effects.  The ANTEDEPENDENCE 1 structure 
recognises that the size at time t+1 is related to the size at time t and growth in the interval.  We will use the 
standard UNSTRUCTURED variance matrix for the Residual as it picks up as much variation as possible. 
 
This leads us to the following ASReml results: 
 
          - - - Results from analysis of WT1 WT28 WT56 WT84 WT112 WT140 WT168 - - - 
 
  18 LogL= 7899.80     S2=  1.0000      66112 df 
 
Covariance/Variance/Correlation Matrix US Residual 
  4.304   0.07640   0.07124   0.07515   0.08214   0.08851   0.08906 
  4.565     829.4    0.3779    0.1658  -0.008651 -0.06857  -0.1123     
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  10.82     797.1     5363.    0.6720   0.5365     0.4611   0.4164     
  20.65     632.2     6517.     17540   0.7711     0.6809   0.6426     
  34.71    -50.75     8003.     20800    41490     0.8592   0.7998     
  51.36    -552.3     9445.     25220    48950      78240   0.8798     
  61.26    -1072.     10110     28210    54020      81590   109900 
 Covariance/Variance/Correlation Matrix ANTE ante1(Tr).nrm(aid) 
  5.974    0.3416    0.2840     0.2083    0.1986    0.1962    0.1920     
  16.54     392.4    0.8314     0.6097    0.5814    0.5743    0.5621     
  44.14     1047.     4042.     0.7333    0.6993    0.6908    0.6761     
  60.88     1444.     5576.      14300    0.9536    0.9420    0.9220     
  87.64     2079.     8027.      20590     32600    0.9879    0.9669     
  101.2     2402.     9272.      23790     37660    44570     0.9788     
  119.2     2829.     10920      28010     44350    52500     64540 
 Covariance/Variance/Correlation Matrix US hys 
  0.1976E+05   1.000     
   6597.       2203.     
 
                                   Wald F statistics 
     Source of Variation           NumDF              F-inc   
  17 Trait                             7            4591.51                  
   6 sex                               1              23.90                  
  19 sex.LinA                          1            2503.34   

 
 
The heritabilites calculated from these matrices are 

Age 1 28 56 84 112 140 168 

Weight 0.58±0.?? 0.32±0.?? 0.43±0.?? 0.45±0.?? 0.44±0.?? 0.36±0.?? 0.37±0.?? 

 
The genetic correlations are high among the last 4 times. And drop with increasing time interval is modelled in the 
antedependence structure, 
 
There are 3 other traits I have labelled TA (205 ±25), TB (199±21) and TC (36.9±4.8).  Following is an analysis of 
these traits with Dayold weight and 3 month weight.  Here I have used US for both strata because the 
antedependence logic does not apply. 
 
 
  14 LogL=-4917.53     S2=  1.0000      25574 df 
 
          - - - Results from analysis of WT1 WT84 TA TB TC - - - 
   
 Covariance/Variance/Correlation Matrix US Residual 
   4.311      0.6349E-01 -0.4292E-01 -0.8485E-01 -0.2192     
   16.33      0.1535E+05  0.5237     -0.3197E-01  0.4435E-01 
  -1.566       1140.       308.7      0.1935      0.1729     
  -2.877      -64.68       55.54       266.7      0.3086     
  -1.803       21.77       12.04       19.97       15.70     
 Covariance/Variance/Correlation Matrix US us(Tr).nrm(aid) 
   5.953      0.1826      0.4390      0.1903      0.6817     
   59.22      0.1766E+05  0.3876     -0.5786     -0.1069     
   18.42       886.2       295.9      0.3567      0.4752     
   6.005      -994.7       79.37       167.3      0.5772     
   3.344      -28.58       16.44       15.01       4.043     
 Covariance/Variance/Correlation Matrix US hys 
   1.321      0.7134     
  0.3030      0.1366     
 
                                   Wald F statistics 
     Source of Variation           NumDF              F-inc   
  17 Trait                             5           16813.46                  



   6 sex                               1               1.06    
  



 
 

Irregular repeated measures: Random regression  
In this case  there is no neat pattern to the repeated observations but we can envisage the measures follow some 
kind of curve with respect to an underlying age.   

 

One approach might be split the ages into classes and apply the Regular method to the classes.  
However, you should not have more classes than the average number of measures per subject.  This 
approach can work for a variable like milk yield typically measured each month and classified by Days in 
Milk, even though the actual DIM values are more or less evenly distributed. How this does not work in 
general. 

The idea of a random regression model is that we model the basic common response curve and then 
model random deviations of the individuals from the common curve.    We discuss this model in relation 
to some milk yield data.  

 

Many studies have shown that milk yield rises quickly early in lactation and drops slowly for a period, 
then more rapidly at the end.  This shape is not easily modelled as a low order polynomial but can be 
modelled as a cubic smoothing spline.   

 

The full data set contains milk yields from several lactations but first consider the 10 or so milk yields 
taken at monthly intervals  for the first lactation of 2484 cows.  The variances as well as the mean 
change over time.  A typical lactation curve is shown in the figure. 

 

 
 For the test data, the period variances were 

Period 5-15 16-30 31-60 61-90 -120 -150 -180 -210 -240 -270 -305 

 9.2 7.0 7.6 7.0 5.9 6.1 5.7 5.5 6.0 5.5 7.0 
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  These results come from fitting the model     
 
tdmy ~ mu dim CG !r spl(dim,11) us(leg(dim,3)).nrm(aid)    us(leg(dim,3)).ide(aid) gg 

residual at(SEC).units 

predict   aid 466  dim 5 15 : 305     !PLOT 

 
given that the data is organised as 1 record per milk yield with covariables dim and SEC (defining the 11 
DIM classes).  Note that cows will only have 1 record in the interval 5-30 days so different cows appear 
in the 5-15 group than in the 16-30 group. 
 
The cubic spline is modelled by the model terms   mu dim !r spl(dim,11) 
and is built by adding the random curvature components  (spl(dim,11))  to an underlying straight line 
(mu dim).  The variance component for the curvature component (spl(dim,11)) controls just how much 
curvature appears. 
 
The cows are mainly crossbreds and the model term  gg  contains proportions of the base breeds. 
 
The ASReml results: 
   1 LogL=-911.947     S2=  1.0000      23386 df  
          - - - Results from analysis of tdmy - - - 
 Akaike Information Criterion    81889.89 (assuming 33 parameters). 
 Bayesian Information Criterion  82155.87 
 
 Model_Term                             Sigma         Sigma   Sigma/SE   % C 



 spl(dim,11)             IDV_V    9   2.54025       2.54025       2.05   0 P 

 gg                      IDV_V   74   3.16957       3.16957       2.06   0 P 

 Residual_1              SCA_V 1300   9.18989       9.18989      14.01   0 P 

 Residual_2              SCA_V 1159   7.01477       7.01477      13.82   0 P 

 Residual_3              SCA_V 2368   7.55529       7.55529      25.62   0 P 

 Residual_4              SCA_V 2451   6.98987       6.98987      27.01   0 P 

 Residual_5              SCA_V 2424   5.92574       5.92574      25.94   0 P 

 Residual_6              SCA_V 2441   6.06780       6.06780      27.64   0 P 

 Residual_7              SCA_V 2444   5.72172       5.72172      27.48   0 P 

 Residual_8              SCA_V 2370   5.50560       5.50560      26.34   0 P 

 Residual_9              SCA_V 2307   6.03564       6.03564      26.24   0 P 

 Residual_10             SCA_V 2214   5.52521       5.52521      23.34   0 P 

 Residual_11             SCA_V 2292   7.04258       7.04258      20.12   0 P 

 us(leg(dim,3)).nrm(aid)               124960 effects 

 leg(dim,3)              US_V  1  1   24.4151       24.4151      11.08   0 P 

 leg(dim,3)              US_C  2  1 -0.153850     -0.153850      -0.26   0 P 

 leg(dim,3)              US_V  2  2   1.34127       1.34127       4.70   0 P 

 leg(dim,3)              US_C  3  1  -2.61239      -2.61239      -5.21   0 P 

 leg(dim,3)              US_C  3  2 -0.792845E-01 -0.792845E-01  -0.48   0 P 

 leg(dim,3)              US_V  3  3  0.829146      0.829146       4.28   0 P 

 leg(dim,3)              US_C  4  1   1.66090       1.66090       5.05   0 P 

 leg(dim,3)              US_C  4  2  0.102657      0.102657       0.99   0 P 

 leg(dim,3)              US_C  4  3 -0.195414     -0.195414      -2.28   0 P 

 leg(dim,3)              US_V  4  4  0.132987      0.132987       1.90   0 P 

 aid                    NRM   31240 

 us(leg(dim,3)).ide(aid)               124960 effects 

 leg(dim,3)              US_V  1  1   10.5392       10.5392       6.58   0 P 

 leg(dim,3)              US_C  2  1  0.454458      0.454458       0.94   0 P 

 leg(dim,3)              US_V  2  2   2.76552       2.76552       9.85   0 P 

 leg(dim,3)              US_C  3  1 -0.733449     -0.733449      -1.77   0 P 

 leg(dim,3)              US_C  3  2  0.232973      0.232973       1.41   0 P 

 leg(dim,3)              US_V  3  3   1.54225       1.54225       7.89   0 P 

 leg(dim,3)              US_C  4  1 -0.349937     -0.349937      -1.20   0 P 

 leg(dim,3)              US_C  4  2 -0.441040     -0.441040      -3.83   0 P 

 leg(dim,3)              US_C  4  3 -0.188553     -0.188553      -1.96   0 P 

 leg(dim,3)              US_V  4  4  0.652034      0.652034       6.92   0 P 

 Covariance/Variance/Correlation Matrix US us(leg(dim,3)).nrm(a 

   24.42     -0.2689E-01 -0.5806      0.9217     

 -0.1539       1.341     -0.7518E-01  0.2431     

  -2.612     -0.7928E-01  0.8291     -0.5885     

   1.661      0.1027     -0.1954      0.1330     

 Covariance/Variance/Correlation Matrix US us(leg(dim,3)).ide(a 

   10.54      0.8418E-01 -0.1819     -0.1335     

  0.4545       2.766      0.1128     -0.3284     

 -0.7335      0.2330       1.542     -0.1880     

 -0.3499     -0.4410     -0.1886      0.6520     

 

                                   Wald F statistics 

     Source of Variation           NumDF              F-inc   

  14 mu                                1            1356.58 

   8 dim                               1             599.59 



   4 CG                              382               3.00 

  
Now this is a random regression model.  We have genetic relationships among the cows (aid = animal 
ID).  The model term  us(leg(dim,3)).nrm(aid)  fits the genetic effects modelling random cubic 
deviations from the common curve.   The model term  us(leg(dim,3)).ide(aid  fits the covariance 
between the repeated observations, also modelled as cubic deviations. 
 
The CG term is contemporary groups.  The 2484 cows represent 383 herds (average 8 cows in each). 
 
Now I do not know whether these cows are subject to seasonal breeding.  If not, then the lactation 
curve for spring calving cows could be different from autumn calving cows.  I suspect these are tropical 
cattle but whether there are seasonal effects should be considered. 
 
The  leg(dim,3) transforms the 10 or so dim values to cubic Legendre polynomial coefficients.  The 
actual coefficients are reported for each  dim  value in the .res file.  The predict statement above 
nominated DIM values of 5, 15 : 305.  The coefficients for these values are: 
 
         5.00000   0.70711  -1.22474   1.58114  -1.87083 
        15.00000   0.70711  -1.14310   1.27545  -1.18347 
        25.00000   0.70711  -1.06145   0.99085  -0.61252 
        35.00000   0.70711  -0.97980   0.72732  -0.14967 
        45.00000   0.70711  -0.89815   0.48488   0.21341 
        55.00000   0.70711  -0.81650   0.26352   0.48503 
        65.00000   0.70711  -0.73485   0.06325   0.67350 
        75.00000   0.70711  -0.65320  -0.11595   0.78713 
        85.00000   0.70711  -0.57155  -0.27406   0.83425 
        95.00000   0.70711  -0.48990  -0.41110   0.82316 
… 
        255.00000   0.70711   0.81650   0.26352  -0.48503 
        265.00000   0.70711   0.89815   0.48488  -0.21341 
        275.00000   0.70711   0.97980   0.72732   0.14967 
        285.00000   0.70711   1.06145   0.99085   0.61252 
        295.00000   0.70711   1.14310   1.27545   1.18347 
        305.00000   0.70711   1.22474   1.58114   1.87083 

 
 Now, fitting this model can be difficult because we like to have to estimate the covariances between 
coefficients as well as the variances, and the ASReml iteration updates may not result in a positive 
definite matrix. 
 
We end up with a 4x4 variance matrix for genetic effects, and for error covariance effects.  Note that the 
matrix is reported as correlations in the top right half (above the main diagonal) but in using the matrix, 
it must be symmetric based on the covariances below the diagonal. 
 
Now this wasn’t the first model I fitted.  First I just fitted linear random regressions: 
 
!PART 1 
tdmy ~ mu dim CG !r spl(dim,11) us(leg(dim,1)).nrm(aid)    us(leg(dim,1)).ide(aid) gg 
residual at(SEC).units 
predict   aid 466  dim 5 15 : 305     !PLOT 

 
And obtained a LogLikelihood  LogL=-1628.45 
 



Then I fitted quadratic random regressions: 
!PART 2 
tdmy ~ mu dim CG !r spl(dim,11) us(leg(dim,2)).nrm(aid)    us(leg(dim,2)).ide(aid) gg 
residual at(SEC).units 
predict   aid 466  dim 5 15 : 305     !PLOT 

 
And obtained a LogLikelihood  LogL=-1057.55 
 
The likelihood from the cubic random regression was  LogL=-911.947    
 
The likelihood would probably further increase if we went to a quartic regression but this is 
basically because the lactation curve is not really polynomial in nature. 
 

   
To obtain an estimate of heritability for any particular day, we need first to calculate the variance 
components for that day. 
 
e.g.   from CSS3.res 
... 
        30.00000   0.70711  -1.02062   0.85645  -0.36810 
... 
        90.00000   0.70711  -0.53072  -0.34522   0.83546 
... 
       240.00000   0.70711   0.69402  -0.02899  -0.73915 
 
The residual variances at these 3 DIM are 7.01476, 6.98986, 6.03564 
The variance matrices are 
 Covariance/Variance/Correlation Matrix US us(leg(dim,3)).nrm(aid) 
   24.42     -0.2689E-01 -0.5806      0.9217     
 -0.1539       1.341     -0.7518E-01  0.2431     
  -2.612     -0.7929E-01  0.8291     -0.5885     
   1.661      0.1027     -0.1954      0.1330     
 Covariance/Variance/Correlation Matrix US us(leg(dim,3)).ide(a 
   10.54      0.8418E-01 -0.1819     -0.1335     
  0.4545       2.766      0.1128     -0.3284     
 -0.7335      0.2330       1.542     -0.1880     
 -0.3499     -0.4410     -0.1886      0.6520 

 
 Putting this in C3.R 
 
  L30 =c(   0.70711,  -1.02062,   0.85645, -0.36810) 
  L90 =c( 0.70711,  -0.53072,  -0.34522,   0.83546) 
  L240 =c(  0.70711,   0.69402,  -0.02899,  -0.73915) 
  E=c( 7.01476, 6.98986, 6.03564) 
NRM=matrix(c( 
   24.42,     -0.02689, -0.5806,      0.9217, 
 -0.1539,       1.341,     -0.07518,  0.2431,     
  -2.612,     -0.07929,  0.8291,     -0.5885, 
   1.661,      0.1027,     -0.1954,      0.1330),4,4) 
IDE=matrix(c( 
   10.54,     0.08418,     -0.1819,     -0.1335, 
  0.4545,       2.766,      0.1128,     -0.3284, 
 -0.7335,      0.2330,       1.542,     -0.1880,     
 -0.3499,     -0.4410,     -0.1886,      0.6520),4,4) 
 NRM[1,2:4]->NRM[2:4,1] 



 NRM[2,3:4]->NRM[3:4,2] 
 NRM[3,4]->NRM[4,3] 
  IDE[1,2:4]->IDE[2:4,1] 
 IDE[2,3:4]->IDE[3:4,2] 
 IDE[3,4]->IDE[4,3] 
  
 A=c( t(L30) %*% NRM %*% L30,  t(L90) %*% NRM %*% L90,t(L240) %*% NRM %*% L240 ) 
 PE= c( t(L30) %*% IDE %*% L30,  t(L90) %*% IDE %*% L90,t(L240) %*% IDE %*% L240 ) 
 h2 = A/(A+PE+E) 

 
we can use R to perform the calculations. 
 
 > source("C3.txt") 
> h2 
[1] 0.4277400 0.5376540 0.4361185 
 
 

The student seeking to analyse this data was interested in getting a genetic covariance/correlation 
between milk yield (DMY) at particular values of DIM and AFC (Age at first calving).  AFC is not a 
repeated measure. 
 
The method of analysis was to expand the data file by adding the AFC records as SECTION 12 and 
creating a new factor TRAIT coded 1 for DMY and 2 for AFC; the AFC values being placed in the same 
data field as the DMY records. 
 
The model specification is 
 
!PART 3 
res ~ SEC + 
 !r !{ at(TR,1).leg(dim,3).aid + at(TR,2).aid us(5).nrm(aid) !} + 
 !{  at(TR,1).leg(dim,3).ide(aid) at(TR,2).ide(aid) us(5).ide(aid) !} + 
us(TRAIT).gg  !f   at(TR,1).CG  at(TR,2).CGB 
residual at(SEC).units 

 
The code  !{ at(TR,1).leg(dim,3).aid at(TR,2).aid us(5).nrm(aid)   !} specifies 2 
model terms and then the variance structure that is put across the model terms.  The effect of !{  !}  is to 
prevent ASReml reordering the terms and messing up the association. We need this kind of structure for 
both the genetic components and the residual components. However, this model is over-specified 
because the residual variance for AFC is specified twice (as the last element in us(5).ide(aid)  and as 
at(SEC,12).units. It also has very poor parameter starting values.  So, start the job running and when 
it has parsed the model, it writes a .tsv file.  Interupt the job and update as many of the parameter 
values as you can from the results from fitting PART 2 (cubic Legendre).  Also, set the parameter for  
at(SEC,12).units to 1 and set the parameter constraint code to F  (fixed).  Then restart the run using  
!CONTINUE 2 
 
 
 
The 5x5 us matrices pertain to the 4 Legendre polynomials and AFC.  To get the covariance between say 
day 30 MY and AFC,  a similar process is needed as described above.    Let  
L30A =matrix(c( 0.70711, -1.02062,  0.85645, -0.36810, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),5,2) 
And calculate  t(L30A) %*% NRM %*% L30A 
 



This gives a 2x2 matrix with variances and the covariance. 

 
 
 
 
18 June 
 
I will do a few other things before working on the LOW data you sent but note 
          Analysis of res  
 
                         Wald F statistics 
Source of Variation           NumDF     DenDF     F-inc              P-inc  
 mu                               1            32682.24 
 CGB                            518                4.36 
 
 Model_Term                     Order    Gamma        Sigma     Z_ratio  %C 
 gg                                74 0.834754E-06 0.778500E-03    0.00   0 B     
 nrm(aid)                       31240 0.798680      744.858        2.03   0 P     
 ide(aid)                       31240 0.619612E-06 0.577857E-03    0.00   0 B     
 Residual_units                  1016  1.00000      932.611        2.81 

 
The number of contemporary groups seems excessive (takes up over half the DF) for AFC. 
For this analysis I scaled the AFC values by 0.25 
 
In the other analysis, CGB was not declared a FACTOR.  Maybe it should have been, in which case 
the variance components will be wrong there. 
 
xfa1(leg(dim,4)).nrm(aid)             187440 effects 
leg(dim,4)             XFA_V  0  1   0.00000       0.00000       0.00   0 F 
leg(dim,4)             XFA_V  0  2   1.30175       1.30175       4.90   0 P 
leg(dim,4)             XFA_V  0  3  0.216441      0.216441       1.92   0 P 
leg(dim,4)             XFA_V  0  4  0.817112E-01  0.817112E-01   0.98   0 P 
leg(dim,4)             XFA_V  0  5   0.00000       0.00000       0.00   0 F 
leg(dim,4)             XFA_L  1  1  -1.58336      -1.58336      -5.97   0 P 
leg(dim,4)             XFA_L  1  2 -0.632362E-01 -0.632362E-01  -0.42   0 P 
leg(dim,4)             XFA_L  1  3  0.862410E-01  0.862410E-01   1.11   0 P 
leg(dim,4)             XFA_L  1  4  0.155947      0.155947       1.64   0 P 
leg(dim,4)             XFA_L  1  5  0.546649E-01  0.546649E-01   1.10   0 P 
aid                    NRM   31240 
 
xfa1(leg(dim,4)).ide(pe)      6174 effects 
leg(dim,4)             XFA_V  0  1   2.82678       2.82678       2.68   0 P 
leg(dim,4)             XFA_V  0  2  0.361102      0.361102       1.47   0 P 
leg(dim,4)             XFA_V  0  3  0.398617      0.398617       3.46   0 P 
leg(dim,4)             XFA_V  0  4  0.164632      0.164632       1.77   0 P 
leg(dim,4)             XFA_V  0  5  0.205445      0.205445       6.72   0 P 
leg(dim,4)             XFA_L  1  1  -1.37671      -1.37671      -4.32   0 P 
leg(dim,4)             XFA_L  1  2  0.486370      0.486370       4.34   0 P 
leg(dim,4)             XFA_L  1  3  0.219622      0.219622       3.62   0 P 
leg(dim,4)             XFA_L  1  4 -0.323878     -0.323878      -3.74   0 P 
leg(dim,4)             XFA_L  1  5  0.769527E-01  0.769527E-01   1.73   0 P 
 
Covariance/Variance/Correlation Matrix XFA xfa1(leg(dim,4)).nrm 



   2.506      0.5532E-01 -0.1821     -0.4800      -1.000      -1.000    
  0.1001       1.306     -0.1007E-01 -0.2655E-01 -0.5532E-01 -0.5532E-01 
-0.1364     -0.5446E-02  0.2238      0.8739E-01  0.1821      0.1821    
 -0.2474     -0.9877E-02  0.1346E-01  0.1060      0.4800      0.4800    
 -0.8638E-01 -0.3449E-02  0.4700E-02  0.8524E-02  0.2977E-02   1.000    
  -1.583     -0.6322E-01  0.8615E-01  0.1562      0.5456E-01   1.000    
 
 Covariance/Variance/Correlation Matrix XFA xfa1(leg(dim,4)).ide 
   4.723     -0.3985     -0.2082      0.3955     -0.1062     -0.6338    
 -0.6696      0.5977      0.2066     -0.3924      0.1054      0.6288    
 -0.3025      0.1068      0.4469     -0.2050      0.5504E-01  0.3285    
  0.4463     -0.1575     -0.7116E-01  0.2696     -0.1046     -0.6240    
 -0.1061      0.3745E-01  0.1692E-01 -0.2496E-01  0.2114      0.1676    
  -1.377      0.4861      0.2196     -0.3240      0.7703E-01   1.000 

  
 
How can I use these estimates to estimate additive variance for different days? 
 
The leading 5x5 block of the 2  6x6 matrices is equivalent to the 5x5 matrix 
you would have attempted to estimate using us() (say A). 
So, take the 5 coefficients for the date of interest from the res file  (say c) 
and form c'Ac   to get the variance for that day. 
 
This has now been facilitated in VPREDICT commands K and M 
V NRM nrm 
V IDE ide 
K coeff  0.70711, -1.02062,  0.85645, -0.36810, 0.0 
K coeff 0.0, 0.0, 0.0, 0.0, 1.0 
M Add30 1:2 NRM 

 
 
 

Further discussion:  Please explain the relationship between the random regression terms 
and the spline terms. 
 
Genetic variance and PE variance relates to differences between animals.  Those differences are centred 
on a mean value. We have used a cubic smoothing spline to model the mean curve, that is the non 
genetic effect. 
 
The fact we use a cubic spline is not connected with the degree of the legendre polynomials used for the 
between animal differences random regression. 
 
The overall lactation curve has a complex shape and is not easily represented by a simple algebraic 
function.  Some have taken that approach (Wilmot curve) but by using a spline, we allow the data to 
define the overall curve.  While DIM values cover the whole range 5:305, we actually only have 11 
measures per animal at regular (monthly) intervals so we use 12 knot points.   
 
The spline is constructed by a fixed set of covariates.  With 12 knot points, we have 12 covariates being a 
fixed intercept and slope and 10 random curvature components.  The random covariates are given the 



same variance which determines the degree of curvature.  If the variance component is zero, we just 
have a straight line.   
 
If all the measures were taken at 11 fixed DIM values, we could in fact use the mean of the values for 
each date for the common curve.  However, it may not be smooth.  The spline covariates result in a 
smooth curve. 
 
Now individuals vary around the common curve.  Part of that variation is independent noise (the cow 
may be sick or injured or some other random thing has happened to influence a particular measurement 
on a particular day).  This is the residual component.  We are however interested in systematic 
differences.  These are modelled by the cubic regression across the cows’ deviations from the common 
(spline) curve.   Thus a high yielding cow should tend to be high on all 11 measures, a low cow low at 
each.  Some will start high and finish low, or vice versus.   
 
Ultimately I suppose you are interested in the total milk yield over say 300 days. This would involve the 
integration of the area under the curve.  Since we only have monthly measures, it is enough to sum the 
individual monthly predictions.  The sum consists of the component due to the average curve and the bit 
due to the deviations.  Say we have predictions at day 10 40 70 and 100.  Using linear interpolation the 
area is (P10 + P40)/2*30 + (P40 + P70)/2*30 +(P70 + P100)/2*30 = (P10/2 + P40 + P70 + P100/2)*30. 
Unfortunately, I do not have a neat way of calculating this in ASReml.  It would not be too hard to 
calculate in R using the appropriate Legendre polynomials and the coefficients in the .sln file.  But 
almost impossible to get a standard error on the prediction.   
 
 
 


